A journey of a software engineer and computer science enthusiast
Search This Blog
Math fundamentals and Katex
It was really tough for me to understand many articles about data science due to the requirements of understanding mathematics (especially linear algebra). I’ve started to gain some basic knowledges about Math by reading a book first.
The great tool Typora and stackedit with supporting Katex syntax simply helps me to display Math-related symbols.
Let’s start!
The fundamental ideas of mathematics: “doing math” with numbers and functions. Linear algebra: “doing math” with vectors and linear transformations.
1. Solving equations
Solving equations means finding the value of the unknown in the equation. To find the solution, we must break the problem down into simpler steps. E.g:
x2−4x2−4+4x2x∣x∣x=7=45=45+4=49=49=7 or x=−7
2. Numbers
Definitions
Mathematicians like to classify the different kinds of number-like objects into sets:
The natural numbers: N = {0,1,2,3,4,5,6,7, … }
The integer: Z = { … , −3,−2,−1,0,1,2,3, … }
The rational numbers: Q = {35, 722, 1.5,0.125,−7, … }
The real numbers: R = {−1,0,1,2,e,π,4.94..., … }
The complex numbers: C = {−1,0,1,i,1+i,2+3i, … }
Operations on numbers
Addition is commutative and associative. That means: a+b=b+a a+b+c=(a+b)+c=a+(b+c)
Subtraction is the inverse operation of addition.
Multiplication is also commutative and associative. ab=b timesa+a+a+...+a=a timesb+b+b+...+b ab=ba abc=(ab)c=a(bc)
Division is the inverse operation of multiplication. You cannot divide by 0.
Exponentiation is multiplying a number by itself many times. ab=b timesaaa...a a−b=ab1 na≡an1
The symbol “≡” stands for “is equivalent to” and is used when two mathematical object are identical.
3. Variables
Variables are placeholder names for any number or unknown. Variable substitution: we can often change variables and replace one unknown variable with another to simplify an equation. For example:
5−x6=xu=x5−u6=u
4. Functions and their inverses
The inverse functionf−1 performs the opposite action of the function f so together the two functions cancel each other out. For example:
f(x)=c
f−1(f(x))=x=f−1(c)
x=f−1(c)
Common functions and their inverses: functionf(x)x+22xx22x3x+5axexp(x)≡exsin(x)cos(x)⇔inversef−1(x)⇔x−2⇔21x⇔±x⇔log2(x)⇔31(x−5)⇔loga(x)⇔ln(x)≡loge(x)⇔sin−1(x)≡arcsin(x)⇔cos−1(x)≡arccos(x)
The principle of “digging” (Bruce Lee-style) toward the unknown by applying inverse functions is the key for solving all these types of equations, so be sure to practice using it.
5. Basic rules of algebra
Given any three numbers a, b, and c we can apply the following algebraic properties:
Associative property: a+b+c=(a+b)+c=a+(b+c) and abc=(ab)c=a(bc)
Commutative property: a+b=b+a and ab=ba
Distributive property: a(b+c) = ab+ac
Some algebraic tricks are useful when solving equations
Expanding brackets: (x+3)(x+2)=x2+5x+6
Factoring: 2x2y+2x+4x=2x(xy+1+2)=2x(xy+3)
Quadratic factoring: x2−5x+6=(x−2)(x−3)
Completing the square: Ax2+Bx+C=A(x−h)2+k e.g: x2+4x+1=(x+2)2−3
6. Solving quadratic equations
The solutions to the equation ax2+bx+c=0 are x1=2a−b+b2−4acandx2=2a−b−b2−4ac
Actually, we can use the technique completing the square to explain this formula.
7. The Cartesian plane
Vectors and points
Point: P=(Px,Py). To find this point, start from the origin and move a distance Px on the x-axis, then move a distance Py on the y-axis.
Vector: v=(vx,vy). Unlike points, we don’t necessarily start from the plane’s origin when mapping vectors.
Graphs of functions
The Cartesian plane is great for visualizing functions, f:R→R
A function as a set of input-output pairs (x,y)=(x,f(x))
8. Functions
We use functions to describe the relationship between variables.
To “know” a function, you must be able to understand and connect several of its aspects including definition, graph, values and relations.
Definition: f:A→B. Function is a mapping from numbers to numbers.
Function composition: fog(x)≡f(g(x))=z
Inverse function: f−1(f(x))≡f−1of(x)=x
Table of values: {(x1,f(x1)),(x2,f(x2)),...}
Function graph: using the Cartesian plane
Relations: e.g: sin2x+cos2x=1
9. Function references
- Line
The equation of a line: f(x)=mx+b and f−1(x)=m1(x−b)
The general equation: Ax+By=C
I use a dynamic image as a logo my report in pdf. At the beginning, I use table to align the logo in left or right. I meet a problem with some images with a large width or height. My customer requires that the logo should be displayed in original size. These following steps solves my problem: 1. Use Grid instead of Table 2. Set Grid "Height" is 100% and "Width" is blank 3. Set "Fit to container" for images are "true". Download the the template here .
Today, I was just curious about why an enum can not extend anything else. I took a look on the Oracle document here , and I found the answer is below: "All enums implicitly extend java.lang.Enum. Because a class can only extend one parent (see Declaring Classes), the Java language does not support multiple inheritance of state (see Multiple Inheritance of State, Implementation, and Type), and therefore an enum cannot extend anything else." I have been learned of it before. But, wait a sec...! Why Java does not support multiple inheritance of state? Since I have worked with other programming languages like C++, I was able to make a class extend some other classes. The short answer is to avoid the issues of multiple inheritance of state . I wonder if other programming languages have these below terms but Java does. Multiple inheritance of state It is the ability to inherit fields from multiple classes. There is a problem and Java avoids it. "For exa...
Our team maintained a project that was used a quite old web technology JSP . Our project likes a web portal that can contain some other smaller projects, I called it a module. Now, our customers want to add a new module into it. We met a problem is the current projects can't be testable and hard to maintain because both the logic and GUI are mixed together by using JSP and JSTL. It was really a messy project structure. Therefore, we didn't want to continue this approach. Testing is very important, as well as a good structure for maintenance. We would like to apply MVC pattern for testable and maintainable ability purpose. Yeah, that was actually time for changes. Our project structure can't be testable and has poor structure. We listed out some options: Refactoring all current modules -- terrible approach, too much efforts, too risky due to a lot of modules. Using MVC just for the new modules with Servlet for C ontroller, Java class for M odel and JSP for V i...
I got the warning in the log file when I have used the tag <h:outputLabel> without attribute " for " in xhtml file. It was really polluting my server log files. The logged information actually makes sense anyway! We could find an answer as the following: "Having h:outputLabel without a "for" attribute is meaningless. If you are not attaching the label, you should be using h:outputText instead of h:outputLabel." However, these solutions are not possible just for my situation. Instead of using h:outputText for only displaying text, my team has used h:outputLabel too many places. We were nearly in our release time (next day) so it is quite risky and takes much efforts if we try to correct it. Because the style (with CSS) is already done with h:ouputLabel . The alternative by adding attribute " for " the existing h:outputLabel is not reasonable either. I really need to find another solution. Fortunately, I came across a way if I cha...
Everyone talks about it, but not everyone knows what it is. Why DevOps? In general, whenever an organization adopts any new technology, methodology, or approach, that adoption has to be driven by a business need. Any kind of system that need rapid delivery of innovation requires DevOps (development and operations). Why? DevOps requires mechanisms to get fast feedback from all the stakeholders in the software application that's being delivered. DevOps approaches to reduce waste and rework and to shift resources to higher-value activities. DevOps aims to deliver value (of organization or project) faster and more efficiently. DevOps Capabilities The capabilities that make up DevOps are a broad set that span the software delivery life cycle. The following picture is a reference architecture which provides a template of a proven solution by using a set of preferred methods and capabilities. My Remarks Okay, that sounds cool. What does it simply mean, again? The f...
Comments
Post a Comment