A journey of a software engineer and computer science enthusiast
Search This Blog
Math fundamentals and Katex
It was really tough for me to understand many articles about data science due to the requirements of understanding mathematics (especially linear algebra). I’ve started to gain some basic knowledges about Math by reading a book first.
The great tool Typora and stackedit with supporting Katex syntax simply helps me to display Math-related symbols.
Let’s start!
The fundamental ideas of mathematics: “doing math” with numbers and functions. Linear algebra: “doing math” with vectors and linear transformations.
1. Solving equations
Solving equations means finding the value of the unknown in the equation. To find the solution, we must break the problem down into simpler steps. E.g:
x2−4x2−4+4x2x∣x∣x=7=45=45+4=49=49=7 or x=−7
2. Numbers
Definitions
Mathematicians like to classify the different kinds of number-like objects into sets:
The natural numbers: N = {0,1,2,3,4,5,6,7, … }
The integer: Z = { … , −3,−2,−1,0,1,2,3, … }
The rational numbers: Q = {35, 722, 1.5,0.125,−7, … }
The real numbers: R = {−1,0,1,2,e,π,4.94..., … }
The complex numbers: C = {−1,0,1,i,1+i,2+3i, … }
Operations on numbers
Addition is commutative and associative. That means: a+b=b+a a+b+c=(a+b)+c=a+(b+c)
Subtraction is the inverse operation of addition.
Multiplication is also commutative and associative. ab=b timesa+a+a+...+a=a timesb+b+b+...+b ab=ba abc=(ab)c=a(bc)
Division is the inverse operation of multiplication. You cannot divide by 0.
Exponentiation is multiplying a number by itself many times. ab=b timesaaa...a a−b=ab1 na≡an1
The symbol “≡” stands for “is equivalent to” and is used when two mathematical object are identical.
3. Variables
Variables are placeholder names for any number or unknown. Variable substitution: we can often change variables and replace one unknown variable with another to simplify an equation. For example:
5−x6=xu=x5−u6=u
4. Functions and their inverses
The inverse functionf−1 performs the opposite action of the function f so together the two functions cancel each other out. For example:
f(x)=c
f−1(f(x))=x=f−1(c)
x=f−1(c)
Common functions and their inverses: functionf(x)x+22xx22x3x+5axexp(x)≡exsin(x)cos(x)⇔inversef−1(x)⇔x−2⇔21x⇔±x⇔log2(x)⇔31(x−5)⇔loga(x)⇔ln(x)≡loge(x)⇔sin−1(x)≡arcsin(x)⇔cos−1(x)≡arccos(x)
The principle of “digging” (Bruce Lee-style) toward the unknown by applying inverse functions is the key for solving all these types of equations, so be sure to practice using it.
5. Basic rules of algebra
Given any three numbers a, b, and c we can apply the following algebraic properties:
Associative property: a+b+c=(a+b)+c=a+(b+c) and abc=(ab)c=a(bc)
Commutative property: a+b=b+a and ab=ba
Distributive property: a(b+c) = ab+ac
Some algebraic tricks are useful when solving equations
Expanding brackets: (x+3)(x+2)=x2+5x+6
Factoring: 2x2y+2x+4x=2x(xy+1+2)=2x(xy+3)
Quadratic factoring: x2−5x+6=(x−2)(x−3)
Completing the square: Ax2+Bx+C=A(x−h)2+k e.g: x2+4x+1=(x+2)2−3
6. Solving quadratic equations
The solutions to the equation ax2+bx+c=0 are x1=2a−b+b2−4acandx2=2a−b−b2−4ac
Actually, we can use the technique completing the square to explain this formula.
7. The Cartesian plane
Vectors and points
Point: P=(Px,Py). To find this point, start from the origin and move a distance Px on the x-axis, then move a distance Py on the y-axis.
Vector: v=(vx,vy). Unlike points, we don’t necessarily start from the plane’s origin when mapping vectors.
Graphs of functions
The Cartesian plane is great for visualizing functions, f:R→R
A function as a set of input-output pairs (x,y)=(x,f(x))
8. Functions
We use functions to describe the relationship between variables.
To “know” a function, you must be able to understand and connect several of its aspects including definition, graph, values and relations.
Definition: f:A→B. Function is a mapping from numbers to numbers.
Function composition: fog(x)≡f(g(x))=z
Inverse function: f−1(f(x))≡f−1of(x)=x
Table of values: {(x1,f(x1)),(x2,f(x2)),...}
Function graph: using the Cartesian plane
Relations: e.g: sin2x+cos2x=1
9. Function references
- Line
The equation of a line: f(x)=mx+b and f−1(x)=m1(x−b)
The general equation: Ax+By=C
In my previous post about building a regex to check a text without special characters but allow German and French . I met a problem that the unit test works fine on my machine using Eclipse, but it was fail when running on Jenkins' build job. Here is my test: @Test public void shouldAllowFrenchAndGermanCharacters(){ String source = "ÄäÖöÜüß áÁàÀâÂéÉèÈêÊîÎçÇ"; assertFalse(SpecialCharactersUtils.isExistSpecialCharater(source)); } Production code: public static boolean isExistNotAllowedCharacters(String source){ Pattern regex = Pattern.compile("^[a-zA-Z_0-9_ÄäÖöÜüß áÁàÀâÂéÉèÈêÊîÎçÇ]*$"); Matcher matcher = regex.matcher(source); return !matcher.matches(); } The result likes the following: Failed tests: SpecialCharactersUtilsTest.shouldAllowFrenchAndGermanCharacters:32 null A guy from stackoverflow.com says: "This is probably due to the default encoding used for your Java source files. The ö in the string literal in the J...
AngularJS already supports the built-in validation with text input with type email. Something simple likes the following: <input name="input" ng-model="email.text" required="" type="email" /> <span class="error" ng-show="myForm.input.$error.email"> Not valid email!</span> However, I used a text area and I wanted to enter some email addresses that's saparated by a comma (,). I had a short research and it looked like AngualarJS has not supported this functionality so far. Therefore, I needed to build a custom directive that I could add my own validation functions. My validation was done only on client side, so I used the $validators object. Note that, there is the $asyncValidators object which handles asynchronous validation, such as making an $http request to the backend. This is just my implementation on my project. In order to understand that, I supposed you already had experiences with ...
There is a standard library for all projects in Python. However, several projects don’t always have the same dependencies all the time. That is where virtual environments come to play. You can follow this official document to use two separated tools virtualenv and pip to fulfill that need. My preferred alternative is to use pipenv . Pipenv is easy to use and convenient. The following are my steps to make a shared virtualenv for my all projects which requires the same dependencies. Step 1. Create an isolated virtualenv. python -m venv my-shared-env Step 2. Create a symbolic link to the created virtualenv. cd project_1 ln -s ~/.local/share/virtualenvs/my-shared-env .venv I have encountered the following issue at step 1. FileNotFoundError: [Errno 2] No such file or directory: '{my_project_path}/.venv/bin/pip': '{my_project_path}/.venv/bin/pip' The root cause was I tried to create virtualenv by running pipenv install and renaming the generated virtualenv to ...
What are your motivations for creativity? - I want to make a change. - It makes me happy! It is a need of my mind. How to be creative for a thing? There are two steps: - See the thing as every people see it - Think about a new different thing from it How to think about a new different thing? There are two ways: - Forget all things you have already known. - A whack on the side of your head. ;) This was what I have learned from the following great book: source: Amazon.com Well! A physical whack on the side of your head is needed sometimes but the meaning behind is that you need to break these 9 following locks on your mind. Remove them! The lock #1: "The correct answer" We all learn from schools that there is only one correct answer to a question. For example, a proposition is only true or false in Algebra. In reality, there are always some answers to a question basing on a point of view. For example, number 6 becomes number 9 if you look it ...
Comments
Post a Comment