Skip to main content

Math fundamentals and Katex


It was really tough for me to understand many articles about data science due to the requirements of understanding mathematics (especially linear algebra). I’ve started to gain some basic knowledges about Math by reading a book first.

The great tool Typora and stackedit with supporting Katex syntax simply helps me to display Math-related symbols.

Let’s start!

The fundamental ideas of mathematics: “doing math” with numbers and functions. Linear algebra: “doing math” with vectors and linear transformations.

1. Solving equations

Solving equations means finding the value of the unknown in the equation. To find the solution, we must break the problem down into simpler steps. E.g:

x24=45x24+4=45+4x2=49x=49x=7x=7 or x=7\begin{aligned} x^2 - 4 &= 45\\ x^2 - 4 + 4 &= 45 + 4\\ x^2 &= 49\\ \sqrt{x}&=\sqrt{49}\\ |x| &= 7\\ x=7 &\text{ or } x=-7 \end{aligned}

2. Numbers

Definitions
Mathematicians like to classify the different kinds of number-like objects into sets:

  • The natural numbers: NN = {0,1,2,3,4,5,6,70, 1, 2, 3, 4, 5, 6, 7, … }
  • The integer: ZZ = { … , 3,2,1,0,1,2,3-3, -2, -1, 0, 1, 2, 3, … }
  • The rational numbers: QQ = {53{5}\over{3}, 227{22}\over{7}, 1.5,0.125,71.5, 0.125, -7, … }
  • The real numbers: RR = {1,0,1,2,e,π,4.94...-1, 0, 1, \sqrt{2}, e, \pi, 4.94..., … }
  • The complex numbers: CC = {1,0,1,i,1+i,2+3i-1, 0, 1, i, 1 + i, 2 + 3i, … }

Operations on numbers

  • Addition is commutative and associative. That means:
    a+b=b+aa + b = b+ a
    a+b+c=(a+b)+c=a+(b+c)a + b + c = (a + b) + c = a + (b + c)
  • Subtraction is the inverse operation of addition.
  • Multiplication is also commutative and associative.
    ab=a+a+a+...+ab times=b+b+b+...+ba timesab = \underbrace{a + a + a + ... + a}_{\text{b times}} = \underbrace{b + b + b + ... + b}_{\text{a times}}
    ab=baab = ba
    abc=(ab)c=a(bc)abc = (ab)c = a(bc)
  • Division is the inverse operation of multiplication. You cannot divide by 0.
  • Exponentiation is multiplying a number by itself many times.
    ab=aaa...ab timesa^b = \underbrace{aaa...a}_{\text{b times}}
    ab=1aba^{-b} = {{1}\over{a^b}}
    ana1n\sqrt[n]{a} \equiv a^{{1}\over{n}}

The symbol “\equiv” stands for “is equivalent to” and is used when two mathematical object are identical.

3. Variables

Variables are placeholder names for any number or unknown. Variable substitution: we can often change variables and replace one unknown variable with another to simplify an equation. For example:

65x=xu=x65u=u \begin{aligned} {6 \over{5 - \sqrt{x}}} = \sqrt{x}\\ u = \sqrt{x}\\ {6 \over{5 - u}} = u \end{aligned}

4. Functions and their inverses

The inverse function f1f^{-1} performs the opposite action of the function ff so together the two functions cancel each other out. For example:

  1. f(x)=cf(x) = c
  2. f1(f(x))=x=f1(c)f^{-1}(f(x)) = x = f^{-1}(c)
  3. x=f1(c)x=f^{-1}(c)

Common functions and their inverses:
functionf(x)inversef1(x)x+2x22x12xx2±x2xlog2(x)3x+513(x5)axloga(x)exp(x)exln(x)loge(x)sin(x)sin1(x)arcsin(x)cos(x)cos1(x)arccos(x) \begin{aligned} function f(x) &\Leftrightarrow inverse f^{-1}(x)\\ x+2 &\Leftrightarrow x-2\\ 2x &\Leftrightarrow {1\over2}x\\ x^2 &\Leftrightarrow \pm{\sqrt{x}}\\ 2^x &\Leftrightarrow log{_2}(x)\\ 3x + 5 &\Leftrightarrow {1\over 3}(x-5)\\ a^x &\Leftrightarrow log{_a}(x)\\ exp(x) \equiv e^x &\Leftrightarrow ln(x) \equiv log{_e}(x)\\ sin(x) &\Leftrightarrow sin^{-1}(x) \equiv arcsin(x)\\ cos(x) &\Leftrightarrow cos^{-1}(x) \equiv arccos(x) \end{aligned}
The principle of “digging” (Bruce Lee-style) toward the unknown by applying inverse functions is the key for solving all these types of equations, so be sure to practice using it.

5. Basic rules of algebra

Given any three numbers a, b, and c we can apply the following algebraic properties:

  • Associative property: a+b+c=(a+b)+c=a+(b+c)a + b + c = (a + b) + c = a + (b+ c) and abc=(ab)c=a(bc)abc = (ab)c = a(bc)
  • Commutative property: a+b=b+aa + b = b + a and ab=baab = ba
  • Distributive property: a(b+c)a(b + c) = ab+acab + ac

Some algebraic tricks are useful when solving equations

  • Expanding brackets: (x+3)(x+2)=x2+5x+6(x + 3)(x +2) = x^2 + 5x + 6
  • Factoring: 2x2y+2x+4x=2x(xy+1+2)=2x(xy+3)2x^2y + 2x + 4x = 2x(xy + 1 + 2) = 2x(xy + 3)
  • Quadratic factoring: x25x+6=(x2)(x3)x^2-5x+6=(x-2)(x-3)
  • Completing the square: Ax2+Bx+C=A(xh)2+kAx^2 + Bx + C = A(x- h)^2 + k e.g: x2+4x+1=(x+2)23x^2 + 4x + 1 = (x + 2)^2-3

6. Solving quadratic equations

The solutions to the equation ax2+bx+c=0ax^2 + bx + c =0 are
x1=b+b24ac2aandx2=bb24ac2a x_1 = {{-b + \sqrt{b^2 - 4ac}}\over{2a}} \quad and \quad x_2 = {{-b -\sqrt{b^2-4ac}}\over{2a}}
Actually, we can use the technique completing the square to explain this formula.

7. The Cartesian plane

Vectors and points

  • Point: P=(Px,Py)P = (P_x, P_y). To find this point, start from the origin and move a distance PxP_x on the x-axis, then move a distance PyP_y on the y-axis.
  • Vector: v=(vx,vy)\overrightarrow{v} = (v_x, v_y). Unlike points, we don’t necessarily start from the plane’s origin when mapping vectors.

Graphs of functions

The Cartesian plane is great for visualizing functions, f:RRf: {R} \rightarrow {R}

A function as a set of input-output pairs (x,y)=(x,f(x))(x, y) = (x, f(x))

8. Functions

We use functions to describe the relationship between variables.

To “know” a function, you must be able to understand and connect several of its aspects including definition, graph, values and relations.

Definition: f:ABf: A \rightarrow B. Function is a mapping from numbers to numbers.

  • Function composition: fog(x)f(g(x))=zfog(x)\equiv f(g(x)) = z
  • Inverse function: f1(f(x))f1of(x)=xf^{-1}(f(x)) \equiv f^{-1}o f(x) = x
  • Table of values: {(x1,f(x1)),(x2,f(x2)),...}\{(x1, f(x1)), (x2, f(x2)), ...\}
  • Function graph: using the Cartesian plane
  • Relations: e.g: sin2x+cos2x=1sin^2x + cos^2x = 1

9. Function references

- Line

The equation of a line: f(x)=mx+bf(x) = mx + b and f1(x)=1m(xb)f^{-1} (x) = {{1\over m} (x-b)}
The general equation: Ax+By=CAx + By = C

- Square/Quadratic: f(x)=x2f(x) = x^2

- Square root: f(x)=xx12f(x) = \sqrt x \equiv x ^{1\over2}

- Absolute value: f(x)=x={xif x0,cif x<0.f(x) = |x| = \begin{cases} x &\text{if } x \ge 0, \\ c &\text{if } x \lt 0.\end{cases}

- Polynomial functions: f(x)=a0+a1x+a2x2+a3x3+...+anxnf(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + ... + a_nx^n

- Sine: f(x)=sin(x)f(x) = sin(x)

- Consine: f(x)=cos(x)=sin(x+π2)f(x) = cos(x) = sin(x + {\pi\over2})

- Tangent: f(x)=tan(x)sin(x)cos(x)f(x) = tan(x) \equiv {sin(x)\over{cos(x)}}

- Exponential: f(x)=exexp(x)f(x) = e^x \equiv exp(x)

- Natural logarithm: f(x)=ln(x)=loge(x)f(x) = ln(x) = log_e(x)

- Function transformation

Vertical translation: g(x)=f(x)+kg(x) = f(x) + k

Horizontal translation: g(x)=f(xh)g(x) = f(x-h)

Veritcal scaling: g(x)=Af(x)g(x) = Af(x)

Horizontal scaling: g(x)=f(ax)g(x) = f(ax)

- General quadratic function: f(x)=A(xh)2+kf(x) = A(x-h)^2 + k

- General sine function: f(x)=Asin(2πλxϕ)f(x) = Asin({2\pi\over\lambda}x - \phi)

10. Polynomials

In general, a polynomial of degree nn has the equation

f(x)=anxn+an1xn1+...+a2x2+a1x+a0k=0nakxkf(x) = a_nx^n + a_{n-1}x^{n-1} + ...+ a_2x^2 + a_1x + a_0 \equiv \displaystyle\sum_{k=0}^na_kx^k

11. Trigonometry

Pythagoras’ theorem
adj2+opp2=hyp2adj2hyp2+opp2hyp2=1sin2(θ)+cos2(θ)=1 \begin{aligned} |adj|^2 + |opp|^2 &= |hyp|^2\\ {{|adj|^2}\over{|hyp|^2}} + {{|opp|^2}\over{|hyp|^2}} &= 1\\ sin^2(\theta) + cos^2(\theta) &= 1 \end{aligned}

12. Trigonometric identities

sin2(θ)+cos2(θ)=1sin^2(\theta) + cos^2(\theta) = 1

sin(a+b)=sin(a)cos(b)+sin(b)cos(a)sin(a+ b) = sin(a)cos(b) + sin(b)cos(a)

cos(a+b)=cos(a)cos(b)sin(a)sin(b)cos(a+b) = cos(a)cos(b) - sin(a)sin(b)

And, more …

13. Geometry

A: area, P: perimeter, V: volume

Triangles: A=12ahaA = {1\over2}ah_a, P=a+b+cP = a + b + c

Sphere: A=4πr2A=4\pi r^2, V=43πr3V={{4\over3}\pi r^3}

Cylinder: A=2(πr2)+(2πr)hA = 2(\pi r^2) + (2\pi r)h, V=(πr2)hV = (\pi r^2)h

14. Circle

Radians: 2π[rad]=36002\pi [rad] = 360^0

15. Sovling systems of linear equations

a1x+b1y=c1a2x+b2y=c2 \begin{aligned} a_1x + b_1y = c1\\ a_2x + b_2y=c_2 \end{aligned}
There are some approaches to sovling it:

  • Solving by substitution
  • Solving by substraction
  • Solving by equating

Reference:
[1]. Ivan Savov, “No bullshit guide to linear algebra”.

Comments

Popular posts from this blog

Junit - Test fails on French or German string assertion

In my previous post about building a regex to check a text without special characters but allow German and French . I met a problem that the unit test works fine on my machine using Eclipse, but it was fail when running on Jenkins' build job. Here is my test: @Test public void shouldAllowFrenchAndGermanCharacters(){ String source = "ÄäÖöÜüß áÁàÀâÂéÉèÈêÊîÎçÇ"; assertFalse(SpecialCharactersUtils.isExistSpecialCharater(source)); } Production code: public static boolean isExistNotAllowedCharacters(String source){ Pattern regex = Pattern.compile("^[a-zA-Z_0-9_ÄäÖöÜüß áÁàÀâÂéÉèÈêÊîÎçÇ]*$"); Matcher matcher = regex.matcher(source); return !matcher.matches(); } The result likes the following: Failed tests: SpecialCharactersUtilsTest.shouldAllowFrenchAndGermanCharacters:32 null A guy from stackoverflow.com says: "This is probably due to the default encoding used for your Java source files. The ö in the string literal in the J...

Coders are NERDS | Learning English with Podcast

Let's learn three English vocabulary words based on real-life context through a humorous video about the life of software coders, especially at big tech companies when they work from home. Credit to Joma Tech. 🤓

Git Feature Branch Workflow

Motivator It's important for a team to have an agreement on how the changes of source code should be applied. According to projects and teams size, we will define a workflow or select one from recommended workflows ; the "Feature Branch Workflow" is a candidate. What is it? - One branch "master" for main codebase - Several separated branches for features development Why should we care? - Be super simple and allow each developer works on a particular feature. - A stable codebase (master) benefits for continuous integration (CI) environment - Leverage "Pull request" for Code review How it works? A lifecyle of a feature branch (usually created by a story) 1. Creator creates a new branch from a story.  For example: "ABC-1-setup-projects" 2. Creator checkouts the created branch and works on the branch (commits, pushes) 3. Creator has done the feature, he uses "pull request" to merge his branch into branch "master...

[Snippet] CSS - Child element overlap parent

I searched from somewhere and found that a lot of people says a basic concept for implementing this feature looks like below: HTML code: <div id="parent">  <div id="child">  </div> </div> And, CSS: #parent{   position: relative;   overflow:hidden; } #child{   position: absolute;   top: -1;   right: -1px; } However, I had a lot of grand-parents in my case and the above code didn't work. Therefore, I needed an alternative. I presumed that my app uses Boostrap and AngularJs, maybe some CSS from them affects mine. I didn't know exactly the problem, but I believed when all CSS is loaded into my browser, I could completely handle it. www.tom-collinson.com I tried to create an example to investigated this problem by Fiddle . Accidentally, I just changed: position: parent; to position: static; for one of parents -> the problem is solved. Look at my code: <div class="modal-body dn-placeholder-parent-positi...

Set up a web server for learning HTTP headers

Motivation We all follow the client-server model using the HTTP protocol for most of our web apps today. In development, we simply may have a backend API server and a frontend (web pages or mobile apps) only. However, it seemed that a proxy server is always required for production. In fact, most of the hardest issues in production come from integration. The requests and responses might be modified by the proxy server. Therefore, the understanding of HTTP protocol is one of the key skills to resolve those issues. I wanted to dive deep into HTTP with some core concepts such as caching, cookies, and CORS. I didn't intend to go quickly rather than moved slowly to have a well understanding of what I do. Prepare a server The easiest way is to use my laptop as a server then I can just use "localhost". I can also use ngrok to make my web server online. Finally, I use an online tool such as RedBot to check the HTTP headers. To make it more excited though, I deployed the app on A...