Skip to main content

Math fundamentals and Katex


It was really tough for me to understand many articles about data science due to the requirements of understanding mathematics (especially linear algebra). I’ve started to gain some basic knowledges about Math by reading a book first.

The great tool Typora and stackedit with supporting Katex syntax simply helps me to display Math-related symbols.

Let’s start!

The fundamental ideas of mathematics: “doing math” with numbers and functions. Linear algebra: “doing math” with vectors and linear transformations.

1. Solving equations

Solving equations means finding the value of the unknown in the equation. To find the solution, we must break the problem down into simpler steps. E.g:

x24=45x24+4=45+4x2=49x=49x=7x=7 or x=7\begin{aligned} x^2 - 4 &= 45\\ x^2 - 4 + 4 &= 45 + 4\\ x^2 &= 49\\ \sqrt{x}&=\sqrt{49}\\ |x| &= 7\\ x=7 &\text{ or } x=-7 \end{aligned}

2. Numbers

Definitions
Mathematicians like to classify the different kinds of number-like objects into sets:

  • The natural numbers: NN = {0,1,2,3,4,5,6,70, 1, 2, 3, 4, 5, 6, 7, … }
  • The integer: ZZ = { … , 3,2,1,0,1,2,3-3, -2, -1, 0, 1, 2, 3, … }
  • The rational numbers: QQ = {53{5}\over{3}, 227{22}\over{7}, 1.5,0.125,71.5, 0.125, -7, … }
  • The real numbers: RR = {1,0,1,2,e,π,4.94...-1, 0, 1, \sqrt{2}, e, \pi, 4.94..., … }
  • The complex numbers: CC = {1,0,1,i,1+i,2+3i-1, 0, 1, i, 1 + i, 2 + 3i, … }

Operations on numbers

  • Addition is commutative and associative. That means:
    a+b=b+aa + b = b+ a
    a+b+c=(a+b)+c=a+(b+c)a + b + c = (a + b) + c = a + (b + c)
  • Subtraction is the inverse operation of addition.
  • Multiplication is also commutative and associative.
    ab=a+a+a+...+ab times=b+b+b+...+ba timesab = \underbrace{a + a + a + ... + a}_{\text{b times}} = \underbrace{b + b + b + ... + b}_{\text{a times}}
    ab=baab = ba
    abc=(ab)c=a(bc)abc = (ab)c = a(bc)
  • Division is the inverse operation of multiplication. You cannot divide by 0.
  • Exponentiation is multiplying a number by itself many times.
    ab=aaa...ab timesa^b = \underbrace{aaa...a}_{\text{b times}}
    ab=1aba^{-b} = {{1}\over{a^b}}
    ana1n\sqrt[n]{a} \equiv a^{{1}\over{n}}

The symbol “\equiv” stands for “is equivalent to” and is used when two mathematical object are identical.

3. Variables

Variables are placeholder names for any number or unknown. Variable substitution: we can often change variables and replace one unknown variable with another to simplify an equation. For example:

65x=xu=x65u=u \begin{aligned} {6 \over{5 - \sqrt{x}}} = \sqrt{x}\\ u = \sqrt{x}\\ {6 \over{5 - u}} = u \end{aligned}

4. Functions and their inverses

The inverse function f1f^{-1} performs the opposite action of the function ff so together the two functions cancel each other out. For example:

  1. f(x)=cf(x) = c
  2. f1(f(x))=x=f1(c)f^{-1}(f(x)) = x = f^{-1}(c)
  3. x=f1(c)x=f^{-1}(c)

Common functions and their inverses:
functionf(x)inversef1(x)x+2x22x12xx2±x2xlog2(x)3x+513(x5)axloga(x)exp(x)exln(x)loge(x)sin(x)sin1(x)arcsin(x)cos(x)cos1(x)arccos(x) \begin{aligned} function f(x) &\Leftrightarrow inverse f^{-1}(x)\\ x+2 &\Leftrightarrow x-2\\ 2x &\Leftrightarrow {1\over2}x\\ x^2 &\Leftrightarrow \pm{\sqrt{x}}\\ 2^x &\Leftrightarrow log{_2}(x)\\ 3x + 5 &\Leftrightarrow {1\over 3}(x-5)\\ a^x &\Leftrightarrow log{_a}(x)\\ exp(x) \equiv e^x &\Leftrightarrow ln(x) \equiv log{_e}(x)\\ sin(x) &\Leftrightarrow sin^{-1}(x) \equiv arcsin(x)\\ cos(x) &\Leftrightarrow cos^{-1}(x) \equiv arccos(x) \end{aligned}
The principle of “digging” (Bruce Lee-style) toward the unknown by applying inverse functions is the key for solving all these types of equations, so be sure to practice using it.

5. Basic rules of algebra

Given any three numbers a, b, and c we can apply the following algebraic properties:

  • Associative property: a+b+c=(a+b)+c=a+(b+c)a + b + c = (a + b) + c = a + (b+ c) and abc=(ab)c=a(bc)abc = (ab)c = a(bc)
  • Commutative property: a+b=b+aa + b = b + a and ab=baab = ba
  • Distributive property: a(b+c)a(b + c) = ab+acab + ac

Some algebraic tricks are useful when solving equations

  • Expanding brackets: (x+3)(x+2)=x2+5x+6(x + 3)(x +2) = x^2 + 5x + 6
  • Factoring: 2x2y+2x+4x=2x(xy+1+2)=2x(xy+3)2x^2y + 2x + 4x = 2x(xy + 1 + 2) = 2x(xy + 3)
  • Quadratic factoring: x25x+6=(x2)(x3)x^2-5x+6=(x-2)(x-3)
  • Completing the square: Ax2+Bx+C=A(xh)2+kAx^2 + Bx + C = A(x- h)^2 + k e.g: x2+4x+1=(x+2)23x^2 + 4x + 1 = (x + 2)^2-3

6. Solving quadratic equations

The solutions to the equation ax2+bx+c=0ax^2 + bx + c =0 are
x1=b+b24ac2aandx2=bb24ac2a x_1 = {{-b + \sqrt{b^2 - 4ac}}\over{2a}} \quad and \quad x_2 = {{-b -\sqrt{b^2-4ac}}\over{2a}}
Actually, we can use the technique completing the square to explain this formula.

7. The Cartesian plane

Vectors and points

  • Point: P=(Px,Py)P = (P_x, P_y). To find this point, start from the origin and move a distance PxP_x on the x-axis, then move a distance PyP_y on the y-axis.
  • Vector: v=(vx,vy)\overrightarrow{v} = (v_x, v_y). Unlike points, we don’t necessarily start from the plane’s origin when mapping vectors.

Graphs of functions

The Cartesian plane is great for visualizing functions, f:RRf: {R} \rightarrow {R}

A function as a set of input-output pairs (x,y)=(x,f(x))(x, y) = (x, f(x))

8. Functions

We use functions to describe the relationship between variables.

To “know” a function, you must be able to understand and connect several of its aspects including definition, graph, values and relations.

Definition: f:ABf: A \rightarrow B. Function is a mapping from numbers to numbers.

  • Function composition: fog(x)f(g(x))=zfog(x)\equiv f(g(x)) = z
  • Inverse function: f1(f(x))f1of(x)=xf^{-1}(f(x)) \equiv f^{-1}o f(x) = x
  • Table of values: {(x1,f(x1)),(x2,f(x2)),...}\{(x1, f(x1)), (x2, f(x2)), ...\}
  • Function graph: using the Cartesian plane
  • Relations: e.g: sin2x+cos2x=1sin^2x + cos^2x = 1

9. Function references

- Line

The equation of a line: f(x)=mx+bf(x) = mx + b and f1(x)=1m(xb)f^{-1} (x) = {{1\over m} (x-b)}
The general equation: Ax+By=CAx + By = C

- Square/Quadratic: f(x)=x2f(x) = x^2

- Square root: f(x)=xx12f(x) = \sqrt x \equiv x ^{1\over2}

- Absolute value: f(x)=x={xif x0,cif x<0.f(x) = |x| = \begin{cases} x &\text{if } x \ge 0, \\ c &\text{if } x \lt 0.\end{cases}

- Polynomial functions: f(x)=a0+a1x+a2x2+a3x3+...+anxnf(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + ... + a_nx^n

- Sine: f(x)=sin(x)f(x) = sin(x)

- Consine: f(x)=cos(x)=sin(x+π2)f(x) = cos(x) = sin(x + {\pi\over2})

- Tangent: f(x)=tan(x)sin(x)cos(x)f(x) = tan(x) \equiv {sin(x)\over{cos(x)}}

- Exponential: f(x)=exexp(x)f(x) = e^x \equiv exp(x)

- Natural logarithm: f(x)=ln(x)=loge(x)f(x) = ln(x) = log_e(x)

- Function transformation

Vertical translation: g(x)=f(x)+kg(x) = f(x) + k

Horizontal translation: g(x)=f(xh)g(x) = f(x-h)

Veritcal scaling: g(x)=Af(x)g(x) = Af(x)

Horizontal scaling: g(x)=f(ax)g(x) = f(ax)

- General quadratic function: f(x)=A(xh)2+kf(x) = A(x-h)^2 + k

- General sine function: f(x)=Asin(2πλxϕ)f(x) = Asin({2\pi\over\lambda}x - \phi)

10. Polynomials

In general, a polynomial of degree nn has the equation

f(x)=anxn+an1xn1+...+a2x2+a1x+a0k=0nakxkf(x) = a_nx^n + a_{n-1}x^{n-1} + ...+ a_2x^2 + a_1x + a_0 \equiv \displaystyle\sum_{k=0}^na_kx^k

11. Trigonometry

Pythagoras’ theorem
adj2+opp2=hyp2adj2hyp2+opp2hyp2=1sin2(θ)+cos2(θ)=1 \begin{aligned} |adj|^2 + |opp|^2 &= |hyp|^2\\ {{|adj|^2}\over{|hyp|^2}} + {{|opp|^2}\over{|hyp|^2}} &= 1\\ sin^2(\theta) + cos^2(\theta) &= 1 \end{aligned}

12. Trigonometric identities

sin2(θ)+cos2(θ)=1sin^2(\theta) + cos^2(\theta) = 1

sin(a+b)=sin(a)cos(b)+sin(b)cos(a)sin(a+ b) = sin(a)cos(b) + sin(b)cos(a)

cos(a+b)=cos(a)cos(b)sin(a)sin(b)cos(a+b) = cos(a)cos(b) - sin(a)sin(b)

And, more …

13. Geometry

A: area, P: perimeter, V: volume

Triangles: A=12ahaA = {1\over2}ah_a, P=a+b+cP = a + b + c

Sphere: A=4πr2A=4\pi r^2, V=43πr3V={{4\over3}\pi r^3}

Cylinder: A=2(πr2)+(2πr)hA = 2(\pi r^2) + (2\pi r)h, V=(πr2)hV = (\pi r^2)h

14. Circle

Radians: 2π[rad]=36002\pi [rad] = 360^0

15. Sovling systems of linear equations

a1x+b1y=c1a2x+b2y=c2 \begin{aligned} a_1x + b_1y = c1\\ a_2x + b_2y=c_2 \end{aligned}
There are some approaches to sovling it:

  • Solving by substitution
  • Solving by substraction
  • Solving by equating

Reference:
[1]. Ivan Savov, “No bullshit guide to linear algebra”.

Comments

Popular posts from this blog

[Snippet] CSS - Child element overlap parent

I searched from somewhere and found that a lot of people says a basic concept for implementing this feature looks like below: HTML code: <div id="parent">  <div id="child">  </div> </div> And, CSS: #parent{   position: relative;   overflow:hidden; } #child{   position: absolute;   top: -1;   right: -1px; } However, I had a lot of grand-parents in my case and the above code didn't work. Therefore, I needed an alternative. I presumed that my app uses Boostrap and AngularJs, maybe some CSS from them affects mine. I didn't know exactly the problem, but I believed when all CSS is loaded into my browser, I could completely handle it. www.tom-collinson.com I tried to create an example to investigated this problem by Fiddle . Accidentally, I just changed: position: parent; to position: static; for one of parents -> the problem is solved. Look at my code: <div class="modal-body dn-placeholder-parent-positi...

JSF 2 - Dynamically manipulating the component tree with system events

Let's suppose we want to modify the metadata (attributes)  of elements such as render , requried , maxlength but we do not define in JSF tags. The manipulating components can be conducted in Drools  files, for example. How could we do? I think that is what we need to change something of component tree during JSF life-cycle. JSF supports event handling throughout the JSF life-cycle. In this post, I use two events: postAddToView for scanning components tree and preRenderView for manipulating the meta of components before rendering to GUI. I modified my own project from previous post for this example. This is my first further JSF trying out with the project as I said before. :) We define the tags f:event below the form - a container component of the components which we want to work on. The valid values for the attribute type for f:event can be found from tag library document  of JSF 2. <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml" x...

Coders are NERDS | Learning English with Podcast

Let's learn three English vocabulary words based on real-life context through a humorous video about the life of software coders, especially at big tech companies when they work from home. Credit to Joma Tech. 🤓

BIRT - Fix the size of an image

I use a dynamic image as a logo my report in pdf. At the beginning, I use table to align the logo in left or right. I meet a problem with some images with a large width or height. My customer requires that the logo should be displayed in original size. These following steps solves my problem: 1. Use Grid instead of Table 2. Set Grid "Height" is 100%  and "Width" is blank 3. Set "Fit to container" for images are "true". Download the the template here .

Junit - Test fails on French or German string assertion

In my previous post about building a regex to check a text without special characters but allow German and French . I met a problem that the unit test works fine on my machine using Eclipse, but it was fail when running on Jenkins' build job. Here is my test: @Test public void shouldAllowFrenchAndGermanCharacters(){ String source = "ÄäÖöÜüß áÁàÀâÂéÉèÈêÊîÎçÇ"; assertFalse(SpecialCharactersUtils.isExistSpecialCharater(source)); } Production code: public static boolean isExistNotAllowedCharacters(String source){ Pattern regex = Pattern.compile("^[a-zA-Z_0-9_ÄäÖöÜüß áÁàÀâÂéÉèÈêÊîÎçÇ]*$"); Matcher matcher = regex.matcher(source); return !matcher.matches(); } The result likes the following: Failed tests: SpecialCharactersUtilsTest.shouldAllowFrenchAndGermanCharacters:32 null A guy from stackoverflow.com says: "This is probably due to the default encoding used for your Java source files. The ö in the string literal in the J...