A journey of a software engineer and computer science enthusiast
Search This Blog
Math fundamentals and Katex
It was really tough for me to understand many articles about data science due to the requirements of understanding mathematics (especially linear algebra). I’ve started to gain some basic knowledges about Math by reading a book first.
The great tool Typora and stackedit with supporting Katex syntax simply helps me to display Math-related symbols.
Let’s start!
The fundamental ideas of mathematics: “doing math” with numbers and functions. Linear algebra: “doing math” with vectors and linear transformations.
1. Solving equations
Solving equations means finding the value of the unknown in the equation. To find the solution, we must break the problem down into simpler steps. E.g:
x2−4x2−4+4x2x∣x∣x=7=45=45+4=49=49=7 or x=−7
2. Numbers
Definitions
Mathematicians like to classify the different kinds of number-like objects into sets:
The natural numbers: N = {0,1,2,3,4,5,6,7, … }
The integer: Z = { … , −3,−2,−1,0,1,2,3, … }
The rational numbers: Q = {35, 722, 1.5,0.125,−7, … }
The real numbers: R = {−1,0,1,2,e,π,4.94..., … }
The complex numbers: C = {−1,0,1,i,1+i,2+3i, … }
Operations on numbers
Addition is commutative and associative. That means: a+b=b+a a+b+c=(a+b)+c=a+(b+c)
Subtraction is the inverse operation of addition.
Multiplication is also commutative and associative. ab=b timesa+a+a+...+a=a timesb+b+b+...+b ab=ba abc=(ab)c=a(bc)
Division is the inverse operation of multiplication. You cannot divide by 0.
Exponentiation is multiplying a number by itself many times. ab=b timesaaa...a a−b=ab1 na≡an1
The symbol “≡” stands for “is equivalent to” and is used when two mathematical object are identical.
3. Variables
Variables are placeholder names for any number or unknown. Variable substitution: we can often change variables and replace one unknown variable with another to simplify an equation. For example:
5−x6=xu=x5−u6=u
4. Functions and their inverses
The inverse functionf−1 performs the opposite action of the function f so together the two functions cancel each other out. For example:
f(x)=c
f−1(f(x))=x=f−1(c)
x=f−1(c)
Common functions and their inverses: functionf(x)x+22xx22x3x+5axexp(x)≡exsin(x)cos(x)⇔inversef−1(x)⇔x−2⇔21x⇔±x⇔log2(x)⇔31(x−5)⇔loga(x)⇔ln(x)≡loge(x)⇔sin−1(x)≡arcsin(x)⇔cos−1(x)≡arccos(x)
The principle of “digging” (Bruce Lee-style) toward the unknown by applying inverse functions is the key for solving all these types of equations, so be sure to practice using it.
5. Basic rules of algebra
Given any three numbers a, b, and c we can apply the following algebraic properties:
Associative property: a+b+c=(a+b)+c=a+(b+c) and abc=(ab)c=a(bc)
Commutative property: a+b=b+a and ab=ba
Distributive property: a(b+c) = ab+ac
Some algebraic tricks are useful when solving equations
Expanding brackets: (x+3)(x+2)=x2+5x+6
Factoring: 2x2y+2x+4x=2x(xy+1+2)=2x(xy+3)
Quadratic factoring: x2−5x+6=(x−2)(x−3)
Completing the square: Ax2+Bx+C=A(x−h)2+k e.g: x2+4x+1=(x+2)2−3
6. Solving quadratic equations
The solutions to the equation ax2+bx+c=0 are x1=2a−b+b2−4acandx2=2a−b−b2−4ac
Actually, we can use the technique completing the square to explain this formula.
7. The Cartesian plane
Vectors and points
Point: P=(Px,Py). To find this point, start from the origin and move a distance Px on the x-axis, then move a distance Py on the y-axis.
Vector: v=(vx,vy). Unlike points, we don’t necessarily start from the plane’s origin when mapping vectors.
Graphs of functions
The Cartesian plane is great for visualizing functions, f:R→R
A function as a set of input-output pairs (x,y)=(x,f(x))
8. Functions
We use functions to describe the relationship between variables.
To “know” a function, you must be able to understand and connect several of its aspects including definition, graph, values and relations.
Definition: f:A→B. Function is a mapping from numbers to numbers.
Function composition: fog(x)≡f(g(x))=z
Inverse function: f−1(f(x))≡f−1of(x)=x
Table of values: {(x1,f(x1)),(x2,f(x2)),...}
Function graph: using the Cartesian plane
Relations: e.g: sin2x+cos2x=1
9. Function references
- Line
The equation of a line: f(x)=mx+b and f−1(x)=m1(x−b)
The general equation: Ax+By=C
I searched from somewhere and found that a lot of people says a basic concept for implementing this feature looks like below: HTML code: <div id="parent"> <div id="child"> </div> </div> And, CSS: #parent{ position: relative; overflow:hidden; } #child{ position: absolute; top: -1; right: -1px; } However, I had a lot of grand-parents in my case and the above code didn't work. Therefore, I needed an alternative. I presumed that my app uses Boostrap and AngularJs, maybe some CSS from them affects mine. I didn't know exactly the problem, but I believed when all CSS is loaded into my browser, I could completely handle it. www.tom-collinson.com I tried to create an example to investigated this problem by Fiddle . Accidentally, I just changed: position: parent; to position: static; for one of parents -> the problem is solved. Look at my code: <div class="modal-body dn-placeholder-parent-positi...
Let's suppose we want to modify the metadata (attributes) of elements such as render , requried , maxlength but we do not define in JSF tags. The manipulating components can be conducted in Drools files, for example. How could we do? I think that is what we need to change something of component tree during JSF life-cycle. JSF supports event handling throughout the JSF life-cycle. In this post, I use two events: postAddToView for scanning components tree and preRenderView for manipulating the meta of components before rendering to GUI. I modified my own project from previous post for this example. This is my first further JSF trying out with the project as I said before. :) We define the tags f:event below the form - a container component of the components which we want to work on. The valid values for the attribute type for f:event can be found from tag library document of JSF 2. <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml" x...
Let's learn three English vocabulary words based on real-life context through a humorous video about the life of software coders, especially at big tech companies when they work from home. Credit to Joma Tech. 🤓
I use a dynamic image as a logo my report in pdf. At the beginning, I use table to align the logo in left or right. I meet a problem with some images with a large width or height. My customer requires that the logo should be displayed in original size. These following steps solves my problem: 1. Use Grid instead of Table 2. Set Grid "Height" is 100% and "Width" is blank 3. Set "Fit to container" for images are "true". Download the the template here .
In my previous post about building a regex to check a text without special characters but allow German and French . I met a problem that the unit test works fine on my machine using Eclipse, but it was fail when running on Jenkins' build job. Here is my test: @Test public void shouldAllowFrenchAndGermanCharacters(){ String source = "ÄäÖöÜüß áÁàÀâÂéÉèÈêÊîÎçÇ"; assertFalse(SpecialCharactersUtils.isExistSpecialCharater(source)); } Production code: public static boolean isExistNotAllowedCharacters(String source){ Pattern regex = Pattern.compile("^[a-zA-Z_0-9_ÄäÖöÜüß áÁàÀâÂéÉèÈêÊîÎçÇ]*$"); Matcher matcher = regex.matcher(source); return !matcher.matches(); } The result likes the following: Failed tests: SpecialCharactersUtilsTest.shouldAllowFrenchAndGermanCharacters:32 null A guy from stackoverflow.com says: "This is probably due to the default encoding used for your Java source files. The ö in the string literal in the J...
Comments
Post a Comment