Skip to main content

Creating a Chatbot with RiveScript in Java

Motivation

"Artificial Intelligence (AI) is considered a major innovation that could disrupt many things. Some people even compare it to the Internet. A large investor firm predicted that some AI startups could become the next Apple, Google or Amazon within five years" 
- Prof. John Vu, Carnegie Mellon University.

Using chatbots to support our daily tasks is super useful and interesting. In fact, "Jenkins CI, Jira Cloud, and Bitbucket" have been becoming must-have apps in Slack of my team these days.

There are some existing approaches for chatbots including pattern matching, algorithms, and neutral networks. RiveScript is a scripting language using "pattern matching" as a simple and powerful approach for building up a Chabot.

Architecture

Actually, it was flexible to choose a programming language for the used Rivescript interpreter like Java, Go, Javascript, Python, and Perl. I went with Java.


Used Technologies and Tools

  • Oracle JDK 1.8.0_151
  • Apache Maven 3.5.2
  • Apache Tomcat 7.0.85
  • RiveScript-Java
  • Jersey sever/client
  • MyFaces

Module ChatBot Backend

I had a backend for chatbot's brain which provided APIs responding to received messages from users via a GUI.

1. Generate a web app project via Maven

mvn archetype:generate \
-DgroupId=vn.nvanhuong \
-DartifactId=chatbot_rivescript_backend \
-DarchetypeArtifactId=maven-archetype-webapp \
-DinteractiveMode=false;

Tips: When importing the project into Eclipse, I encountered an error "The superclass "javax.servlet.http.HttpServlet" was not found on the Java Build Path". I solved it by "Right click on the project/Properties/Project Facets/Runtimes/Check Apache Tomcat v.7.0"

2. Add dependencies needed in `pom.xml`

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>vn.nvanhuong</groupId>
 <artifactId>chatbot_rivescript_backend</artifactId>
 <packaging>war</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>chatbot_rivescript_backend Maven Webapp</name>
 <url>http://maven.apache.org</url>

 <dependencies>
  <!-- ChatBot Brain -->
  <dependency>
   <groupId>com.rivescript</groupId>
   <artifactId>rivescript-core</artifactId>
   <version>0.10.0</version>
  </dependency>

  <!-- RESTful APIs -->
  <dependency>
   <groupId>com.sun.jersey</groupId>
   <artifactId>jersey-server</artifactId>
   <version>1.8</version>
  </dependency>

  <!-- JSON -->
  <dependency>
   <groupId>org.json</groupId>
   <artifactId>json</artifactId>
   <version>20160810</version>
  </dependency>

  <!-- Unit tests -->
  <dependency>
   <groupId>junit</groupId>
   <artifactId>junit</artifactId>
   <version>4.12</version>
   <scope>test</scope>
  </dependency>
 </dependencies>

 <build>
  <finalName>chatbot_rivescript_backend</finalName>
 </build>
</project>

3. Create chatbot's brain with RiveScript

I created a file "chatbot_brain.rive" under the folder "src/main/resources/rivescript". I copied the content of template file "rs_standard.rive" at https://www.rivescript.com/try
+ hello bot
- Hello human!

4. Create RESTful APIs

package vn.nvanhuong.chatbot.rivescript.backend;

import javax.ws.rs.POST;
import javax.ws.rs.Path;

import com.rivescript.Config;
import com.rivescript.RiveScript;
import com.sun.jersey.spi.resource.Singleton;

@Path("/bot")
@Singleton
public class ChatBot {
 private RiveScript bot;
 
 public ChatBot() {
  String rivescriptFilePath = ChatBot.class.getClassLoader().getResource("rivescript").getFile();
  bot = new RiveScript(Config.utf8());
  
  bot.loadDirectory(rivescriptFilePath);
        bot.sortReplies();
 }
 
 @POST
 public String getMsg(String msg) {
  return bot.reply("user", msg);
 }

}

5. Configure RESTful at `web.xml`

<web-app id="WebApp_ID" version="2.4"
 xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">
 <display-name>Restful Web Application</display-name>

 <servlet>
  <servlet-name>jersey-serlvet</servlet-name>
  <servlet-class>
                     com.sun.jersey.spi.container.servlet.ServletContainer
                </servlet-class>
  <init-param>
       <param-name>com.sun.jersey.config.property.packages</param-name>
       <param-value>vn.nvanhuong.chatbot.rivescript.backend</param-value>
  </init-param>
  <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet-mapping>
  <servlet-name>jersey-serlvet</servlet-name>
  <url-pattern>/rest/*</url-pattern>
 </servlet-mapping>

</web-app> 

6. Write a test case

package vn.nvanhuong.chatbot.rivescript.backend.test;

import static org.junit.Assert.assertEquals;

import org.junit.Test;

import vn.nvanhuong.chatbot.rivescript.backend.ChatBot;

public class ChatBotTest {
 
 @Test
 public void should_say_hello() {
  ChatBot bot = new ChatBot();
  
  assertEquals("Hello Human!", bot.getMsg("Hello Bot"));
 }
}

7. Test the API with Postman

URL: http://localhost:8080/chatbot_rivescript_backend/rest/bot

Module ChatBot GUI

1. Generate a web app project via Maven

mvn archetype:generate \
-DgroupId=vn.nvanhuong \
-DartifactId=chatbot_rivescript_gui \
-DarchetypeArtifactId=maven-archetype-webapp \
-DinteractiveMode=false

2. Add dependencies needed in pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>vn.nvanhuong</groupId>
 <artifactId>chatbot_rivescript_gui</artifactId>
 <packaging>war</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>chatbot_rivescript_gui Maven Webapp</name>
 <url>http://maven.apache.org</url>

 <dependencies>
  <!-- JAX-RS Client -->
  <dependency>
   <groupId>org.glassfish.jersey.core</groupId>
   <artifactId>jersey-client</artifactId>
   <version>2.25.1</version>
  </dependency>

  <!-- JSF Pages -->
  <dependency>
   <groupId>org.apache.myfaces.core</groupId>
   <artifactId>myfaces-api</artifactId>
   <version>2.2.0</version>
  </dependency>
  <dependency>
   <groupId>org.apache.myfaces.core</groupId>
   <artifactId>myfaces-impl</artifactId>
   <version>2.2.0</version>
  </dependency>

  <!-- Unit test -->
  <dependency>
   <groupId>junit</groupId>
   <artifactId>junit</artifactId>
   <version>4.12</version>
   <scope>test</scope>
  </dependency>
 </dependencies>

 <build>
  <finalName>chatbot_rivescript_gui</finalName>
 </build>
</project>

3. Configure JSF at web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5">
  
 <!-- JSF mapping -->
 <servlet>
  <servlet-name>Faces Servlet</servlet-name>
  <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
  <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
  <servlet-name>Faces Servlet</servlet-name>
  <url-pattern>*.xhtml</url-pattern>
 </servlet-mapping>
   
  <!-- welcome page -->
  <welcome-file-list>
    <welcome-file>index.xhtml</welcome-file>
  </welcome-file-list>
</web-app>

4. Create a GUI

Rename index.jsp to index.xthml

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:p="http://xmlns.jcp.org/jsf/passthrough">
 <h:head>
  <title>RiveScript</title>
  <style>
   
   .container {
    display: block;
     margin: 50px auto;
     width: 90%;
   }
   
   .chatbox {
    height: 600px;
     border: solid 1px #039;
     background-image: url(bot_logo.png);
     background-repeat: no-repeat;
     background-position: center;
     background-size: contain;
     display: flex;
     justify-content: center;
     align-items: center;
   }
   
   .chatbox .bot-dialog {
    width: 90%;
     border: dashed 1px purple;
     text-align: center;
     background-color: orange;
   }
   
   .chatbox .bot-dialog > span{
    font-size: larger;
   }
   
   .message {
    display: flex;
    justify-content: space-between;
    
   }
   .message > input.message-input {
    width: 90%;
    margin-top: 10px;
    line-height: 2.3;
   }
   
   .message > input.submit {
    width: 9%;
     background-color: #039;
     color: white;
     font-size: 15px;
     margin-top: 10px;
   }
   
   .message-display > span {
     font-style: italic;
 }
 .message-display > label {
     font-weight: bold;
 }
 .message-display {
     margin-top: 5px;
 }
   
  </style>
 </h:head>
 <h:body>
 <h:form>
    <h:panelGroup layout="block" styleClass="container">
      <h:panelGroup layout="block" styleClass="chatbox">
       <h:panelGroup layout="block" styleClass="bot-dialog">
        <h:outputText id="botMessage" value="#{controller.botMessage}" escape="false"/>
       </h:panelGroup>
      </h:panelGroup>
      
      <h:panelGroup layout="block" styleClass="message">
       <h:inputText id="input" value="#{controller.humanMessage}" styleClass="message-input" 
        p:placeholder="Send a message to the bot"
        p:autofocus="true"
        onblur="this.focus()"/>
       <h:commandButton id="button" value="Send" actionListener="#{controller.onSend}" styleClass="submit"/>
      </h:panelGroup>
      
      <h:panelGroup layout="block" styleClass="message-display" rendered="#{not empty controller.humanMessageDisplay}">
       <h:outputLabel for="messageDisplay" value="You just said: "/>
       <h:outputText id="messageDisplay" value="#{controller.humanMessageDisplay}"/>
      </h:panelGroup>
    </h:panelGroup>
 </h:form>
 </h:body>
</html>

5. Create a Controller to call the RESTful APIs

package vn.vanhuong.chatbot.rivescript.gui;

import javax.faces.bean.ManagedBean;
import javax.faces.event.ActionEvent;
import javax.ws.rs.client.ClientBuilder;
import javax.ws.rs.client.Entity;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.Response;

@ManagedBean(name = "controller")
public class Controller {
 
 private String humanMessage;
 private String botMessage;
 private String humanMessageDisplay;

 public void onSend(ActionEvent event) {
  Response response = ClientBuilder.newClient().target("http://localhost:8080/chatbot_rivescript_backend/rest/bot")
    .request(MediaType.APPLICATION_FORM_URLENCODED)
    .post(Entity.entity(humanMessage, MediaType.APPLICATION_FORM_URLENCODED));
  this.botMessage = response.readEntity(String.class);
  this.humanMessageDisplay = humanMessage;
  this.humanMessage = null;
 }

 public String getHumanMessage() {
  return humanMessage;
 }

 public void setHumanMessage(String humanMessage) {
  this.humanMessage = humanMessage;
 }

 public String getBotMessage() {
  return botMessage;
 }

 public void setBotMessage(String botMessage) {
  this.botMessage = botMessage;
 }

 public String getHumanMessageDisplay() {
  return humanMessageDisplay;
 }

 public void setHumanMessageDisplay(String humanMessageDisplay) {
  this.humanMessageDisplay = humanMessageDisplay;
 }
}

6. Enjoy playing with your ChatBot

Check out my source code as below

- Backend: https://github.com/vnnvanhuong/chatbot_rivescript_backend.git
- GUI: https://github.com/vnnvanhuong/chatbot_rivescript_gui.git

References:
[1]. http://science-technology.vn/?p=5761
[2]. https://www.rivescript.com/interpreters
[3]. https://github.com/aichaos/rivescript-java
[4]. https://youtu.be/wf8w1BJb9Xc

Comments

  1. Java today has occupies an unique place in the software industry even though the language become old. After the arrival of different programming languages, Java doesn’t leave its place from the programmers.
    java coaching centers in chennai
    java coaching in chennai

    ReplyDelete
  2. It is very good blog and useful for students and developer,Thanks for sharing

    Java Online Course

    ReplyDelete

  3. Very good information about DevOps clear explanation thanks for sharing
    anyone want to learn advance devops tools or devops online training visit:
    DevOps Online Training

    ReplyDelete
  4. This idea is mind blowing. I think everyone should know such information like you have described on this post. Thank you for sharing this explanation.Your final conclusion was good. We are sowing seeds and need to be patiently wait till it blossoms.
    Chatbot Company in India
    Chatbot Company in Chennai
    Chatbot Development Company in Chennai
    Chatbot in Chennai
    Chatbot Development Company in India

    ReplyDelete
  5. Thanks for sharing Information to us. If someone wants to know about,I think this is the right place for you!

    Android App Development in Coimbatore
    Chatbot Development Company
    3D Animation Company

    ReplyDelete
  6. Thank you for another great article. Where else could anyone get that kind of information in such a perfect way of writing? I have a presentation next week, and I am on the look for such information. chatbot for eCommerce Website

    ReplyDelete
  7. This is really helpful and informative, as this gave me more insight to create more ideas and solutions for my plan. Quality content is the key to attract readers. This article really helped me a lot.
    Chatbot Developers in Dubai
    Facebook Chatbot in Dubai
    AI Chatbot in Dubai
    Artificial intelligence Company in Dubai

    ReplyDelete
  8. Great job for publishing such a beneficial web site. Your web log isn’t only useful but it is additionally really creative too. There tend to be not many people who can certainly write not so simple posts that artistically. Continue the nice writing chatbot online

    ReplyDelete

Post a Comment

Popular posts from this blog

Applying pipeline “tensorflow_embedding” of Rasa NLU

According to this nice article, there was a new pipeline released using a different approach from the standard one (spacy_sklearn). I wanted to give it a try to see whether it can help with improving bot’s accuracy.

After applying done, I gave an evaluation of “tensorflow_embedding”. It seemed to work better a bit. For example, I defined intents “greet” and “goodbye” with some following messages in my training data.
## intent:greet- Hey! How are you? - Hi! How can I help you? - Good to see you! - Nice to see you! - Hi - Hello - Hi there ## intent:goodbye- Bye - Bye Bye - See you later - Take care - Peace In order to play around with Rasa NLU, I created a project here. You can have a look at this change from this pull request. Yay!

When I entered message “hi bot”, then bot with “tensorflow_embedding” could detect intent “greet” with better confidence scores rather than bot with “spacy_sklearn”. The following are responses after executing curl -X POST localhost:5000/parse -d '{&qu…

[Snippet] CSS - Child element overlap parent

I searched from somewhere and found that a lot of people says a basic concept for implementing this feature looks like below:
HTML code:
<div id="parent">  <div id="child">  </div> </div> And, CSS:
#parent{   position: relative;   overflow:hidden; } #child{   position: absolute;   top: -1;   right: -1px; }
However, I had a lot of grand-parents in my case and the above code didn't work. Therefore, I needed an alternative. I presumed that my app uses Boostrap and AngularJs, maybe some CSS from them affects mine. I didn't know exactly the problem, but I believed when all CSS is loaded into my browser, I could completely handle it.

www.tom-collinson.com

I tried to create an example to investigated this problem by Fiddle. Accidentally, I just changed: position: parent; to position: static; for one of parents -> the problem is solved.
Look at my code:

<div class="modal-body dn-placeholder-parent-position"> <div clas…

How I did customize "rasa-nlu-trainer" as my own tool

Check out my implementation here Background I wanted to have a tool for human beings to classify intents and extract entities of texts which were obtained from a raw dataset such as Rocket.chat's conversation, Maluuba Frames or here. Then, the output (labeled texts) could be consumed by an NLU tool such as Rasa NLU.

rasa-nlu-trainer was a potential one which I didn't need to build an app from scratch. However, I needed to add more of my own features to fulfill my needs. They were:

1. Loading/displaying raw texts stored by a database such as MongoDB
2. Manually labeling intents and entities for the loaded texts
3. Persisting labeled texts into the database

I firstly did look up what rasa-nlu-trainer's technologies were used in order to see how to implement my mentioned features.
At first glancerasa-nlu-trainer was bootstrapped with Create React App. Create React App is a tool to create a React app with no build configuration, as it said. This tool is also recommended by the …

The HelloWorld example of JSF 2.2 with Myfaces

I just did by myself create a very simple app "HelloWorld" of JSF 2.2 with a concrete implementation Myfaces that we can use it later on for our further JSF trying out. I attached the source code link at the end part. Just follow these steps below:

1. Create a Maven project in Eclipse (Kepler) with a simple Java web application archetype "maven-archetype-webapp". Maven should be the best choice for managing the dependencies, so far. JSF is a web framework that is the reason why I chose the mentioned archetype for my example.

2. Import dependencies for JSF implementation - Myfaces (v2.2.10) into file pom.xml. The following code that is easy to find from http://mvnrepository.com/ with key words "myfaces".

<dependency> <groupId>org.apache.myfaces.core</groupId> <artifactId>myfaces-api</artifactId> <version>2.2.10</version> </dependency> <dependency> <groupId>org.apache.myfaces.core</groupId&g…